
Satoku Matrix
Release 0.0

Wolfgang Scherer

Apr 18, 2025

Quickstart

See http://sw-amt.ws/README-Satoku.html for an explanation of the satoku matrix.

To get started load satoku.el:

Press C-x C-e at end of the following expression:

(load-file "satoku.el")

or press:

M-x load-file RET satoku.el RET

Then execute the command satoku-insert-matrix:

M-x satoku-insert-matrix RET

Which will give you a Satoku matrix with a single clause sub-matrix:

// | || S|| 0| 0|| 1 1 1 |
// +----++----++---+----++-------+
// +-----+----++---+----++-------+
// | | 0|| | || 1 * * |
// | | 1|| | || * 1 * |
// | | 2|| | || * * 1 |
// +-----+----++---+----++-------+
// |:info:| move point inside and press `C-u M-x satoku-mode RET'

Position point somewhere inside the matrix and execute:

C-u M-x satoku-mode RET

This constrains your cursor movements to the matrix and assigns special commands to certain keys. (Note: Outside
the matrix, the keys work as usual).

Press ? for help.

Some commands are prefix commands (e.g. g). Press ? after the prefix command to get help.

To extend the matrix with another 3x3 clause sub-matrix, press C-u 3 > >:

// | || S|| 0| 0|| 1 1 1 | 1 1 1 |
// +----++----++---+----++-------+-------+
// +-----+----++---+----++-------+-------+
// | | 0|| | || 1 * * | _ _ _ |
// | | 1|| | || * 1 * | _ _ _ |
// | | 2|| | || * * 1 | _ _ _ |
// +-----+----++---+----++-------+-------+
// | | 3|| | || _ _ _ | 1 * * |
// | | 4|| | || _ _ _ | * 1 * |
// | | 5|| | || _ _ _ | * * 1 |
// +-----+----++---+----++-------+-------+
// |:info:| move point inside and press `C-u M-x satoku-mode RET'

Press > > to get a separator line:

// | || S|| 0| 0|| 1 1 1 | 1 1 1 ||
// +----++----++---+----++-------+-------++
// +-----+----++---+----++-------+-------++
// | | 0|| | || 1 * * | _ _ _ ||
// | | 1|| | || * 1 * | _ _ _ ||
// | | 2|| | || * * 1 | _ _ _ ||
// +-----+----++---+----++-------+-------++
// | | 3|| | || _ _ _ | 1 * * ||
// | | 4|| | || _ _ _ | * 1 * ||
// | | 5|| | || _ _ _ | * * 1 ||

(continues on next page)

http://sw-amt.ws/README-Satoku.html

Satoku Matrix, Release 0.0

(continued from previous page)

// +-----+----++---+----++-------+-------++
// +-----+----++---+----++-------+-------++
// |:info:| move point inside and press `C-u M-x satoku-mode RET'

Press C-u 2 > > to get a 2x2 clause sub-matrix, repeat, and repeat again (hint: you can use keyboard macros).

Normal keys are disabled inside the matrix (but not the legend), use 0 to mark selection conflicts, - to clear a cell.
(Mirror cells are automatically changed accordingly.)

Do not use 1 to mark required selections. Exclude all other selections with 0 instead:

// | || S|| 0| 0|| 1 1 1 | 1 1 1 || 1 1 | 1 1 | 1 1 |
// +----++----++---+----++-------+-------++-----+-----+-----+
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 0|| | || 1 * * | 0 _ _ || _ 0 | _ _ | _ _ |
// | | 1|| | || * 1 * | _ _ 0 || _ _ | _ _ | _ _ |
// | | 2|| | || * * 1 | _ _ 0 || _ _ | _ _ | _ _ |
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 3|| | || 0 _ _ | 1 * * || 0 _ | _ _ | _ _ |
// | | 4|| | || _ _ _ | * 1 * || _ _ | _ _ | _ _ |
// | | 5|| | || _ 0 0 | * * 1 || _ _ | _ _ | _ _ |
// +-----+----++---+----++-------+-------++-----+-----+-----+
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 6|| | || _ _ _ | 0 _ _ || 1 * | _ _ | _ _ | a
// | | 7|| | || 0 _ _ | _ _ _ || * 1 | _ _ | _ _ | ¬a
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 8|| | || _ _ _ | _ _ _ || _ _ | 1 * | _ _ | b
// | | 9|| | || _ _ _ | _ _ _ || _ _ | * 1 | _ _ | ¬b
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 10|| | || _ _ _ | _ _ _ || _ _ | _ _ | 1 * | c
// | | 11|| | || _ _ _ | _ _ _ || _ _ | _ _ | * 1 | ¬c
// +-----+----++---+----++-------+-------++-----+-----+-----+
// |:info:| move point inside and press `C-u M-x satoku-mode RET'

Then press r u to run the requirements update algorithm, which detects and fills in the hard one requirements.

If you did use 1 and are no longer sure, whether the matrix conditions are proper, press r c to clear all hard one
requirements. Then press r u to run the requirements update algorithm.

// | || S|| 0| 0|| 1 1 1 | 1 1 1 || 1 1 | 1 1 | 1 1 |
// +----++----++---+----++-------+-------++-----+-----+-----+
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 0|| | || 1 * * | 0 _ _ || 1 0 | _ _ | _ _ |
// | | 1|| | || * 1 * | _ _ 0 || _ _ | _ _ | _ _ |
// | | 2|| | || * * 1 | _ _ 0 || _ _ | _ _ | _ _ |
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 3|| | || 0 _ _ | 1 * * || 0 1 | _ _ | _ _ |
// | | 4|| | || _ _ _ | * 1 * || _ _ | _ _ | _ _ |
// | | 5|| | || 1 0 0 | * * 1 || 1 0 | _ _ | _ _ |
// +-----+----++---+----++-------+-------++-----+-----+-----+
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 6|| | || _ _ _ | 0 _ _ || 1 * | _ _ | _ _ | a
// | | 7|| | || 0 _ _ | _ _ 0 || * 1 | _ _ | _ _ | ¬a
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 8|| | || _ _ _ | _ _ _ || _ _ | 1 * | _ _ | b
// | | 9|| | || _ _ _ | _ _ _ || _ _ | * 1 | _ _ | ¬b
// +-----+----++---+----++-------+-------++-----+-----+-----+
// | | 10|| | || _ _ _ | _ _ _ || _ _ | _ _ | 1 * | c
// | | 11|| | || _ _ _ | _ _ _ || _ _ | _ _ | * 1 | ¬c
// +-----+----++---+----++-------+-------++-----+-----+-----+
// |:info:| move point inside and press `C-u M-x satoku-mode RET'

2

Abstract

CONTENTS

List of Figures ii

List of Tables iii

List of Code Blocks iv

1 Introduction 1

2 Bit Counter 2
2.1 Truth Table . 2
2.2 Processing 𝑆0 . 2
2.3 Processing 𝑆1 . 7
2.4 Alternative Resolution of 𝑆0 . 11

Abbreviations 16

Glossary 17

Bibliography 19

Index 22

i

LIST OF FIGURES

2.1 Satoku matrix* S0 for 𝑆0 . 4
2.2 State rows 𝑠00 and 𝑠10 joined in S0 . 4
2.3 State rows 𝑠00 and 𝑠10 joined and consolidated in S0 . 5
2.4 State rows 𝑠20 and 𝑠30 joined in S0 . 5
2.5 State rows 𝑠20 and 𝑠30 joined and consolidated in S0 . 6
2.6 Redundancies removed from S0 . 6
2.7 Cell matrix rows 𝑐0 and 𝑐1 merged in S0, implicants at range 𝑟502 . . . 𝑟534 7
2.8 Cell matrix rows 𝑐′0 and 𝑐′1 removed, 𝑐3 permuted into 𝑐4, BCF at range 𝑟400 . . . 𝑟432 in S0 7
2.9 Satoku matrix S1 for 𝑆1 . 8
2.10 Identify MCCR(𝑟003) for expansion in S1. 8
2.11 MCCR(𝑟003), MCCR(𝑟012), MCCR(𝑟021) expanded in S1 . 9
2.12 Identify conflict subsequences 𝑠100 , 𝑠102 and absorbed cell matrix rows 𝑐0, 𝑐7, 𝑐8 in S1 9
2.13 bit-counter-s1.n.v-002-merge-sub-red-01.svg . 10
2.14 bit-counter-s1.n.v-002-merge-sub-red-02.svg . 10
2.15 bit-counter-s1.n.v-002-merge-sub-red-03.svg . 10
2.16 bit-counter-s0.n.v-010-mmcr-00.svg . 11
2.17 bit-counter-s0.n.v-010-mmcr-01.svg . 11
2.18 bit-counter-s0.n.v-010-mmcr-02.svg . 12
2.19 bit-counter-s0.n.v-010-mmcr-03.svg . 12
2.20 bit-counter-s0.n.v-010-mmcr-04.svg . 13
2.21 bit-counter-s0.n.v-010-mmcr-05.svg . 13
2.22 bit-counter-s0.n.v-010-mmcr-06.svg . 14
2.23 bit-counter-s0.n.v-010-mmcr-07.svg . 14
2.24 bit-counter-s0.n.v-010-mmcr-08.svg . 15
2.25 bit-counter-s0.n.v-010-mmcr-09.svg . 15

ii

LIST OF TABLES

2.1 Truth table for bit counter . 2

iii

LIST OF CODE BLOCKS

iv

CHAPTER

ONE

INTRODUCTION

1

CHAPTER

TWO

BIT COUNTER

A bit counter for 3 bits is presented as an example for determining the Blake normal form (sum of prime impli-
cants) of a logical formula in conjunctive normal form using the satoku matrix.

2.1 Truth Table

For 3 input bits 𝐴, 𝐵 and 𝐶, the outputs 𝑆0 and 𝑆1 shall reflect the number of 1 bits at the inputs as a binary
number, where 𝑆0 = 20 and 𝑆1 = 21 .

In table 2.1, the definitions for the logical functions of 𝑆0 and 𝑆1 are shown.

table 2.1: Truth table for bit counter
𝐴 𝐵 𝐶 𝑆1 𝑆0

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

2.2 Processing 𝑆0

The conjunctive normal form (CNF) for 𝑆0 is derived from truth table table 2.1 by constructing an implicate,
which is a disjunctive clause that becomes false for each of the inputs, when the output is false:

𝑆0 = (𝐴 ∨ 𝐵 ∨ 𝐶) ∧
(𝐴 ∨ ¬𝐵 ∨ ¬𝐶) ∧
(¬𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧
(¬𝐴 ∨ ¬𝐵 ∨ 𝐶)

(2.1)

Complementary Assignment (distributive expansion, multiplication) of (2.1) delivers a special disjunctive normal
form (DNF) containing all prime implicants called the Blake canonical form (BCF) for 𝑆0:

𝑆0 = (¬𝐴 ∧ ¬𝐵 ∧ 𝐶) ∨
(¬𝐴 ∧ 𝐵 ∧ ¬𝐶) ∨
(𝐴 ∧ ¬𝐵 ∧ ¬𝐶) ∨
(𝐴 ∧ 𝐵 ∧ 𝐶)

(2.2)

Complementary Assignment of BCF (2.2) delivers the set of prime implicates for 𝑆0:

𝑆0 = (¬𝐴 ∨ ¬𝐵 ∨ 𝐶)
(¬𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧
(𝐴 ∨ ¬𝐵 ∨ ¬𝐶) ∧
(𝐴 ∨ 𝐵 ∨ 𝐶) ∧

(2.3)

2

Satoku Matrix, Release 0.0

Adding a clause for each variable to (2.1) containing the variable and its negation delivers the extended CNF for
mapping to a satoku matrix:

𝑆0 = (𝐴 ∨ 𝐵 ∨ 𝐶) ∧
(𝐴 ∨ ¬𝐵 ∨ ¬𝐶) ∧
(¬𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧
(¬𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧
(𝐴 ∨ ¬𝐴) ∧
(𝐵 ∨ ¬𝐵) ∧
(𝐶 ∨ ¬𝐶)

(2.4)

2.2. Processing 𝑆0 3

Satoku Matrix, Release 0.0

A satoku matrix S is based on an inverted symmetric adjacency matrix.

In figure 2.1 the satoku matrix S0 is mapped from the extended CNF formula (2.4) for 𝑆0, analogous to mapping
a SAT problem to an independent set problem [MOUNT2012], pp. 92.

The clauses are mapped to 𝑟000 . . . 𝑟323 , the variables are mapped to 𝑟404 . . . 𝑟616 , The region at 𝑟004 . . . 𝑟326
reflects the originally required variables for each input CNF.

figure 2.1: Satoku matrix* S0 for 𝑆0

Since state rows 𝑠00 and 𝑠10 are independent, because conflict relationship 𝑠0010
̸= 0 and conflict relationship

𝑠1000
̸= 0 and the relevant conflict subsequences 𝑟002 . . . 𝑟003 and 𝑟102 . . . 𝑟103 are equal, they can be joined by

making each other required, i.e setting conflict relationships 𝑠0011
:= 0, 𝑠0012

:= 0, which makes conflict rela-
tionship 𝑠0010

required, and setting conflict relationships 𝑠1001 := 0, 𝑠1002
:= 0, which makes conflict relationship

𝑠1000
required. (See figure 2.2).

figure 2.2: State rows 𝑠00 and 𝑠10 joined in S0

After consolidating the satoku matrix S0 by propagating the conflict relationships of required states, it presents
state rows 𝑠00 and 𝑠10 joined as shown in figure 2.3.

Additional consequences from the advance decision were detected during consolidation in state rows
𝑠01 , 𝑠02 , 𝑠11 , 𝑠12 .

This technique is an arbitrary (but not random!) advance decision to select a state when another state is selected
and vice versa. The decision has no consequence on the satisfiability of the problem, since both states are equal
at the time of the advance decision. Note, that these advance decisions can only be made in a consolidated satoku
matrix S. Therefore, it is not valid to join more than 2 states at a time.

Also note, that assignments to variables have no strong connection to selections from a clause. I.e., just because
one literal of a clause becomes true, it does not preclude any other literal of the clause becoming true. Further, the
advance decision does not affect the current global state of any variables.

4 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

figure 2.3: State rows 𝑠00 and 𝑠10 joined and consolidated in S0

Since state rows 𝑠20 and 𝑠30 are independent and their relevant conflict subsequences are equal, they can be joined
by making each other required as shown in figure 2.4.

figure 2.4: State rows 𝑠20 and 𝑠30 joined in S0

2.2. Processing 𝑆0 5

Satoku Matrix, Release 0.0

Conflict propagation during consolidation has affected the entire satoku matrix S0 as shown in figure 2.5. Cell
𝑐01 shows that all state rows from cell 𝑐11 are required and therefore cell matrix row 𝑐1 can be removed from the
satoku matrix. The same holds for cell row 𝑐3 based on the required conflict relationships in cell 𝑐23 .

figure 2.5: State rows 𝑠20 and 𝑠30 joined and consolidated in S0

In figure 2.6 the redundant cell matrix rows are removed.

Counting the possible conflict relationships in cell 𝑐01 reveals that merging both cell matrix rows 𝑐0 and 𝑐1 will
only result in a maximum of 4 state rows in cell matrix row 𝑐5.

Cells 𝑐50 and 𝑐51 have been prepared to require all combinations of state rows allowed by 𝑐01 .

figure 2.6: Redundancies removed from S0

6 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

In figure 2.7 the cell matrix rows 𝑐0 and 𝑐1 have been merged and satoku matrix S0 reveals a set of implicants for
𝑆0 in cell matrix row 𝑐5 at range 𝑟502 . . . 𝑟534 . It is further possible to remove the cell matrix rows 𝑐0 and 𝑐1 from
satoku matrix S0 since they are fully absorbed by cells 𝑐50 and 𝑐51 . This results in a net decrease of the matrix
size. Finally, a state row permutation has been prepared in cell 𝑐65 .

figure 2.7: Cell matrix rows 𝑐0 and 𝑐1 merged in S0, implicants at range 𝑟502 . . . 𝑟534

In figure 2.8, cell matrix rows 𝑐′0 and 𝑐′1 have been removed from satoku matrix S0. Consolidation has generated
a state row permutation of cell matrix row 𝑐3 in cell matrix row 𝑐4. The set of conjuctions defined at range
𝑟400 . . . 𝑟432 is now identical to the BCF for 𝑆0 in (2.2).

figure 2.8: Cell matrix rows 𝑐′0 and 𝑐′1 removed, 𝑐3 permuted into 𝑐4, BCF at range 𝑟400 . . . 𝑟432 in S0

2.3 Processing 𝑆1

The conjunctive normal form (CNF) for 𝑆1 is derived from truth table table 2.1:

𝑆1 = (𝐴 ∨ 𝐵 ∨ 𝐶) ∧
(𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧
(𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧
(¬𝐴 ∨ 𝐵 ∨ 𝐶)

(2.5)

Complementary Assignment (distributive expansion, multiplication) of (2.5) delivers a special disjunctive normal
form (DNF) containing all prime implicants called the Blake canonical form (BCF) for 𝑆1:

𝑆1 = (𝐵 ∧ 𝐶) ∨
(𝐴 ∧ 𝐶) ∨
(𝐴 ∧ 𝐵)

(2.6)

2.3. Processing 𝑆1 7

Satoku Matrix, Release 0.0

Complementary Assignment of BCF (2.6) delivers the set of prime implicates for 𝑆1:

𝑆1 = (𝐵 ∨ 𝐶) ∧
(𝐴 ∨ 𝐶) ∧
(𝐴 ∨ 𝐵)

(2.7)

Adding a clause for each variable to (2.5) containing the variable and its negation delivers the extended CNF for
mapping to a satoku matrix:

(𝐴 ∨ 𝐵 ∨ 𝐶) ∧
(𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧
(𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧
(¬𝐴 ∨ 𝐵 ∨ 𝐶)
(𝐴 ∨ ¬𝐴) ∧
(𝐵 ∨ ¬𝐵) ∧
(𝐶 ∨ ¬𝐶)

(2.8)

In figure 2.9 the satoku matrix S1 is mapped from the CNF formula (2.8) for 𝑆1.

figure 2.9: Satoku matrix S1 for 𝑆1

In figure 2.10, Cell row 𝑟003 is a minor conflict cell row, MCCR(𝑟𝑖𝑗𝑔) ≡ |P(𝑟𝑖𝑗𝑔)| = 2, containing 2 possible
conflict relationships. The consequences can be inspected by merging state row 𝑠00 with state row 𝑠31 , which is
prepared in cell rows 𝑟700 and 𝑟703 , and by merging state row 𝑠00 with state row 𝑠32 , which is prepared in cell
rows 𝑟710 and 𝑟713 . Cell row 𝑟720 expresses the fact that alternatively 𝑠01 or 𝑠02 can become required.

figure 2.10: Identify MCCR(𝑟003) for expansion in S1.

8 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

The expansion of minor conflict cell rows 𝑟003 , 𝑟012 , and 𝑟021 is shown in figure 2.11 at cells matrix rows 𝑐7, 𝑐8,
and 𝑐9. Cell 𝑐78 signifies, that cell matrix rows 𝑐7 and 𝑐8 can be reduced to a single cell matrix row with 5 state
rows.

figure 2.11: MCCR(𝑟003), MCCR(𝑟012), MCCR(𝑟021) expanded in S1

In figure 2.12 the relevant conflict subsequences of state rows 𝑠100 and 𝑠102 are identifed as equal, and therefore
state row 𝑠102 can be removed. Further, cells 𝑐100 , 𝑐107 and 𝑐108 signify that cell matrix rows 𝑐0, 𝑐7 and 𝑐8 are
absorbed and can be removed from S1.

figure 2.12: Identify conflict subsequences 𝑠100 , 𝑠102 and absorbed cell matrix rows 𝑐0, 𝑐7, 𝑐8 in S1

2.3. Processing 𝑆1 9

Satoku Matrix, Release 0.0

figure 2.13: bit-counter-s1.n.v-002-merge-sub-red-01.svg

figure 2.14: bit-counter-s1.n.v-002-merge-sub-red-02.svg

figure 2.15: bit-counter-s1.n.v-002-merge-sub-red-03.svg

10 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

2.4 Alternative Resolution of 𝑆0

figure 2.16: bit-counter-s0.n.v-010-mmcr-00.svg

figure 2.17: bit-counter-s0.n.v-010-mmcr-01.svg

2.4. Alternative Resolution of 𝑆0 11

Satoku Matrix, Release 0.0

figure 2.18: bit-counter-s0.n.v-010-mmcr-02.svg

figure 2.19: bit-counter-s0.n.v-010-mmcr-03.svg

12 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

figure 2.20: bit-counter-s0.n.v-010-mmcr-04.svg

figure 2.21: bit-counter-s0.n.v-010-mmcr-05.svg

2.4. Alternative Resolution of 𝑆0 13

Satoku Matrix, Release 0.0

figure 2.22: bit-counter-s0.n.v-010-mmcr-06.svg

figure 2.23: bit-counter-s0.n.v-010-mmcr-07.svg

14 Chapter 2. Bit Counter

Satoku Matrix, Release 0.0

figure 2.24: bit-counter-s0.n.v-010-mmcr-08.svg

figure 2.25: bit-counter-s0.n.v-010-mmcr-09.svg

2.4. Alternative Resolution of 𝑆0 15

ABBREVIATIONS

BCF see Blake Canonical Form

CNF see Conjunctive normal form

DNF see Disjunctive normal form

DPLL see DPLL algorithm

16

GLOSSARY

Adjacency matrix As Wikipedia describes it[WPADJ]:

In graph theory and computer science, an adjacency matrix is a square matrix used to represent
a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not
in the graph.

In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros
on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency
matrix is symmetric.

Blake Canonical Form As Wikipedia describes it[WPBCF]:

In Boolean logic, a formula for a Boolean function 𝑓 is in Blake canonical form (BCF), also
called the complete sum of prime implicants, the complete sum, or the disjunctive prime form,
when it is a disjunction of all the prime implicants of 𝑓 . [. . .]

The Blake canonical form is a special case of disjunctive normal form.

The Blake canonical form is not necessarily minimal, however all the terms of a minimal sum
are contained in the Blake canonical form. [. . .]

Selecting a minimal sum from a Blake canonical form amounts in general to solving the set cover
problem, so is NP-hard.

Conjunctive normal form As Wikipedia describes it[WPCNF]:

In Boolean algebra, a formula is in conjunctive normal form (CNF) or clausal normal form if it
is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put,
it is a product of sums or an AND of ORs.

A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions
of one or more literals. As in disjunctive normal form (DNF), the only propositional operators
in CNF are or (∨), and (∧), and not (¬). The not operator can only be used as part of a literal,
which means that it can only precede a propositional variable.

Disjunctive normal form As Wikipedia describes it[WPDNF]:

In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical for-
mula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a
sum of products. [. . .]

A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions
of one or more literals. A DNF formula is in full disjunctive normal form if each of its variables
appears exactly once in every conjunction and each conjunction appears at most once (up to the
order of variables). As in conjunctive normal form (CNF), the only propositional operators in
DNF are and (∧), or (∨), and not (¬). The not operator can only be used as part of a literal, which
means that it can only precede a propositional variable.

DPLL algorithm This algorithm ist utterly irrelevant to the satoku matrix.

As Wikipedia describes it[WPDPLL]:

17

Satoku Matrix, Release 0.0

In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is
a complete, backtracking-based search algorithm for deciding the satisfiability of propositional
logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.

In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is
a complete, backtracking-based search algorithm for deciding the satisfiability of propositional
logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.

The basic backtracking algorithm runs by choosing a literal, assigning a truth value to it, sim-
plifying the formula and then recursively checking if the simplified formula is satisfiable; if this
is the case, the original formula is satisfiable; otherwise, the same recursive check is done as-
suming the opposite truth value. This is known as the splitting rule, as it splits the problem into
two simpler sub-problems. The simplification step essentially removes all clauses that become
true under the assignment from the formula, and all literals that become false from the remaining
clauses.

The DPLL algorithm enhances over the backtracking algorithm by the eager use of the following
rules at each step:

Unit propagation

If a clause is a unit clause, i.e. it contains only a single unassigned literal, this clause can only be
satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary.
Unit propagation consists in removing every clause containing a unit clause’s literal and in dis-
carding the complement of a unit clause’s literal from every clause containing that complement.
In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the
naive search space.

Pure literal elimination

If a propositional variable occurs with only one polarity in the formula, it is called pure. A pure
literal can always be assigned in a way that makes all clauses containing it true. Thus, when it is
assigned in such a way, these clauses do not constrain the search anymore, and can be deleted.

Unsatisfiability of a given partial assignment is detected if one clause becomes empty, i.e. if all its
variables have been assigned in a way that makes the corresponding literals false. Satisfiability
of the formula is detected either when all variables are assigned without generating the empty
clause, or, in modern implementations, if all clauses are satisfied. Unsatisfiability of the complete
formula can only be detected after exhaustive search.

Implicant As Wikipedia describes it[WPIMP]:

In Boolean logic, the term implicant has either a generic or a particular meaning. In the generic
use, it refers to the hypothesis of an implication (implicant). In the particular use, a product term
(i.e., a conjunction of literals) 𝑃 is an implicant of a Boolean function 𝐹 , denoted 𝑃 ≤ 𝐹 , if 𝑃
implies 𝐹 (i.e., whenever 𝑃 takes the value 1 so does 𝐹).

Implicate An implicate is a sum term (i.e., a disjunction of literals) 𝑃 which implies falsehood of a Boolean
function 𝐹 . I.e., whenever 𝑃 takes the value 0 so does 𝐹 .

18 Glossary

BIBLIOGRAPHY

[SHINY] Shiny, A. K., & Pujari, A. K. (1999). An Efficient Algorithm to Generate Prime Implicants. Journal
of Automated Reasoning, 22(2), 149–170. https://doi.org/10.1023/A:1005940031099.

In this paper, an efficient recursive algorithm is presented to compute the set of prime implicants of
a propositional formula in conjunctive normal form (CNF). The propositional formula is represented
as a (0,1)-matrix, and a set of 1’s across its columns are termed as paths. The algorithm finds the
prime implicants as the prime paths in the matrix using the divide-and-conquer technique. The algo-
rithm is based on the principle that the prime implicant of a formula is the concatenation of the prime
implicants of two of its subformulae. The set of prime paths containing a specific literal and devoid
of a literal are characterized. Based on this characterization, the formula is recursively divided into
subformulae to employ the divide-and-conquer paradigm. The prime paths of the subformulae are
then concatenated to obtain the prime paths of the formula. In this process, the number of subsump-
tion operations is reduced. It is also shown that the earlier algorithm based on prime paths has some
avoidable computations that the proposed algorithm avoids. Besides being more efficient, the pro-
posed algorithm has the additional advantage of being suitable for the incremental method, without
recomputing prime paths for the updated formula. The subsumption operation is one of the crucial
operations for any such algorithms, and it is shown that the number of subsumption operation is re-
duced in the proposed algorithm. Experimental results are presented to substantiate that the proposed
algorithm is more efficient than the existing algorithms.

[WPADJ] Wikipedia contributors. (2025, March 28). Adjacency matrix. In Wikipedia, The Free Encyclope-
dia. Retrieved 20:27, April 11, 2025, from https://en.wikipedia.org/w/index.php?title=Adjacency_
matrix&oldid=1282826257

[WPBCF] Wikipedia contributors. (2025, March 23). Blake canonical form. In Wikipedia, The Free Ency-
clopedia. Retrieved 15:29, April 10, 2025, from https://en.wikipedia.org/w/index.php?title=Blake_
canonical_form&oldid=1281935421

[WPCNF] Wikipedia contributors. (2025, February 11). Conjunctive normal form. In Wikipedia, The Free
Encyclopedia. Retrieved 20:27, April 10, 2025, from https://en.wikipedia.org/w/index.php?title=
Conjunctive_normal_form&oldid=1275190406

[WPDNF] Wikipedia contributors. (2025, April 4). Disjunctive normal form. In Wikipedia, The Free Encyclope-
dia. Retrieved 01:46, April 11, 2025, from https://en.wikipedia.org/w/index.php?title=Disjunctive_
normal_form&oldid=1283900821

[WPDPLL] Wikipedia contributors. (2025, February 21). DPLL algorithm. In Wikipedia, The Free Encyclopedia.
Retrieved 04:30, April 12, 2025, from https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&
oldid=1276987229

[WPIMP] Wikipedia contributors. (2025, January 14). Implicant. In Wikipedia, The Free Encyclopedia. Re-
trieved 14:49, April 10, 2025, from https://en.wikipedia.org/w/index.php?title=Implicant&oldid=
1269337610

[CHENG201115] Cheng, CK. (2011). Lecture 15: Karnaugh Maps II. In CSE20, Discrete Mathematics. Univer-
sity of California, San Diego. https://cseweb.ucsd.edu/classes/sp11/cse20-a/notes/lec15.ppt.

Objective of this course is to introduce discrete mathematics for computer system designs.

19

https://doi.org/10.1023/A:1005940031099
https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=1282826257
https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=1282826257
https://en.wikipedia.org/w/index.php?title=Blake_canonical_form&oldid=1281935421
https://en.wikipedia.org/w/index.php?title=Blake_canonical_form&oldid=1281935421
https://en.wikipedia.org/w/index.php?title=Conjunctive_normal_form&oldid=1275190406
https://en.wikipedia.org/w/index.php?title=Conjunctive_normal_form&oldid=1275190406
https://en.wikipedia.org/w/index.php?title=Disjunctive_normal_form&oldid=1283900821
https://en.wikipedia.org/w/index.php?title=Disjunctive_normal_form&oldid=1283900821
https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&oldid=1276987229
https://en.wikipedia.org/w/index.php?title=DPLL_algorithm&oldid=1276987229
https://en.wikipedia.org/w/index.php?title=Implicant&oldid=1269337610
https://en.wikipedia.org/w/index.php?title=Implicant&oldid=1269337610
https://cseweb.ucsd.edu/classes/sp11/cse20-a/notes/lec15.ppt

Satoku Matrix, Release 0.0

[deKleer1999] Kleer, J. de. (1999). An Improved Incremental Algorithm for Generating Prime Implicates. In H. J.
Levesque & F. Pirri (Eds.), Logical Foundations for Cognitive Agents: Contributions in Honor of Ray
Reiter (pp. 103–112). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60211-5_9.

In 1987 Ray Reiter and I wrote a paper entitled “Foundations of assumption-based truth maintenance
systems: Preliminary report” which showed how the behavior of the Assumption-Based Truth Main-
tenance System can be defined using the notions of prime implicate and prime implicant. This defini-
tion of the ATMS immediately suggests generalizing the ATMS to operate on arbitrary clauses. This
generalization raises two immediate computational challenges (to me, not Ray who seems immune
to such challenges). First, computing prime implicates/implicants is very expensive. Second, since
ATMS’s are used incrementally we need to exploit previous computation. This paper describes an
improved and incremental algorithm to compute prime implicates/implicants. This algorithm allows
us to experiment with the ideas Ray and I laid out in our paper. Unfortunately, the task is inherently
NP-complete and all this paper can accomplish is present a more clever incremental algorithm.

[DELVAL1994551] del Val, A. (1994). Tractable Databases: How to Make Propositional Unit Resolution Com-
plete through Compilation. In J. Doyle, E. Sandewall, & P. Torasso (Eds.), Principles of Knowl-
edge Representation and Reasoning (pp. 551–561). Morgan Kaufmann. https://doi.org/10.1016/
B978-1-4832-1452-8.50146-9.

We present procedures to compile any propositional clausal database 𝜎 into a logically equivalent
“compiled” database 𝜎* such that. for any clause C, 𝜎 |= C if and only if there is a unit refutation
of 𝜎* U C. It follows that once the compilation process is complete any query about the logical
consequences of 𝜎 can be correctly answered in time linear in the sum of the sizes of 𝜎* and the
query. The compiled database 𝜎* is for all but one of the procedures a subset of the set PI(𝜎) of prime
implicates of 𝜎, but 𝜎* can be exponentially smaller than PI(𝜎). Of independent interest, we prove
the equivalence of unit-refutability with two restrictions of resolution, and provide a new sufficient
condition for unit refutation completeness, thus identifying a new class of tractable theories, one
which is of interest to abduction problems as well. Finally, we apply the results to the design of a
complete LTMS.

[Echenim2017PrimeIG] Echenim, M., Peltier, N., & Tourret, S. (2017). Prime Implicate Generation in Equational
Logic. J. Artif. Intell. Res., 60, 827–880. https://api.semanticscholar.org/CorpusID:8314981.

We present an algorithm for the generation of prime implicates in equational logic, that is, of the most
general consequences of formulæ containing equations and disequations between first-order terms.
This algorithm is defined by a calculus that is proved to be correct and complete. We then focus on the
case where the considered clause set is ground, i.e., contains no variables, and devise a specialized
tree data structure that is designed to efficiently detect and delete redundant implicates. The corre-
sponding algorithms are presented along with their termination and correctness proofs. Finally, an
experimental evaluation of this prime implicate generation method is conducted in the ground case,
including a comparison with state-of-the-art propositional and first-order prime implicate generation
tools.

[KEAN1990185] Kean, A., & Tsiknis, G. (1990). An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation, 9(2), 185–206. https://doi.org/https://doi.org/10.
1016/S0747-7171(08)80029-6.

Given the recent investigation of Clause Management Systems (CMSs) for ArtificialIntelligence ap-
plications, there is an urgent need for an efficient incremental method for generating prime impli-
cants. Given a set of clauses F, a set of prime implicants II of F and a clause C1 the problem can be
formulated as finding the set of prime implicants for II U C. Intuitively, the property of implicants,
being prime implies that any effort to generate prime implicants from a set of prime implicants will
not yield any new prime implicants but themselves. In this paper, we exploit the properties of prime
implicants and propose an incremental method for generating prime implicants from a set of existing
prime implicants plus a new clause. The correctness proof and complexity analysis of the incremental
method are presented, and the intricacy of subsumptions in the incremental method is also examined.
Additionally, the role of prime implicants in the CMS is also mentioned.

[MOSSE] Mossé, M., Sha, H., & Tan, L.-Y. (2022). A Generalization of the Satisfiability Coding Lemma and
Its Applications. In K. S. Meel & O. Strichman (Eds.), 25th International Conference on Theory

20 Bibliography

https://doi.org/10.1007/978-3-642-60211-5_9
https://doi.org/10.1016/B978-1-4832-1452-8.50146-9
https://doi.org/10.1016/B978-1-4832-1452-8.50146-9
https://api.semanticscholar.org/CorpusID:8314981
https://doi.org/https://doi.org/10.1016/S0747-7171(08)80029-6
https://doi.org/https://doi.org/10.1016/S0747-7171(08)80029-6

Satoku Matrix, Release 0.0

and Applications of Satisfiability Testing (SAT 2022) (Vol. 236, pp. 9:1–9:18). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2022.9.

The seminal Satisfiability Coding Lemma of Paturi, Pudlák, and Zane is a coding scheme for satisfy-
ing assignments of k-CNF formulas. We generalize it to give a coding scheme for implicants and use
this generalized scheme to establish new structural and algorithmic properties of prime implicants
of k-CNF formulas. Our first application is a near-optimal bound of 𝑛 · 3𝑛(1−Ω(1/𝑘)) on the num-
ber of prime implicants of any n-variable k-CNF formula. This resolves an open problem from the
Ph.D. thesis of Talebanfard, who proved such a bound for the special case of constant-read k-CNF
formulas. Our proof is algorithmic in nature, yielding an algorithm for computing the set of all prime
implicants - the Blake Canonical Form BCF - of a given k-CNF formula. The problem of computing
the Blake Canonical Form BCF of a given function is a classic one, dating back to Quine, and our
work gives the first non-trivial algorithm for k-CNF formulas.

[MOUNT2012] David M. Mount. (2012). Lecture Notes. CMSC 451, Design and Analysis of Computer Algo-
rithms. https://sw-amt.ws/David-Mount-cmsc451-lects.pdf original URL at https://cseweb.ucsd.edu/
classes/sp11/cse20-a/notes/lec15.ppt is no longer available.

[SCH2013CDF] Scherer, W. (2013). Generalization of CNF and Consequences for DNF of Implicants under Dis-
tributive Expansion. https://sw-amt.ws/satoku/doc/doc-cnf-cdf-pde/satoku-cnf-cdf-pde.pdf [Online;
accessed 2015-02-01].

The conjunctive normal form CNF, is generalized to a conjunction of disjunctive normal form clauses
CDF, by dropping the restrictions for syllogistic formulas. It is shown, that this can lead to more de-
sirable results for solving some satisfiability and counting problems. Distributive expansion of logical
formulae is shown to have properties different from distributive expansion of arithmetic formulae and
can be broken down into polynomial time and exponential time parts. The polynomial time portion
can be used to develop systematic algorithms which can neither be provided by mathematical logic
nor plain graph theory.

[SCHLENGA2020] Schlenga, A. (2020). SAT - CDCL. Seminar - Automated Reasoning. https://www21.in.tum.
de/teaching/sar/SS20/1.pdf [Online; accessed 2025-04-14].

I present the CDCL algorithm and its implementation based on existing literature. This algorithm
is used to solve SAT problems efficiently. First, the basics of SAT solving are introduced, then the
CDCL algorithm’s functionality is explained and a modern implementation is presented

Bibliography 21

https://doi.org/10.4230/LIPIcs.SAT.2022.9
https://sw-amt.ws/David-Mount-cmsc451-lects.pdf
https://cseweb.ucsd.edu/classes/sp11/cse20-a/notes/lec15.ppt
https://cseweb.ucsd.edu/classes/sp11/cse20-a/notes/lec15.ppt
https://sw-amt.ws/satoku/doc/doc-cnf-cdf-pde/satoku-cnf-cdf-pde.pdf
https://www21.in.tum.de/teaching/sar/SS20/1.pdf
https://www21.in.tum.de/teaching/sar/SS20/1.pdf

INDEX

A
Adjacency matrix, 17

B
BCF, 16
Blake Canonical Form, 17

C
CNF, 16
Conjunctive normal form, 17

D
Disjunctive normal form, 17
DNF, 16
DPLL, 16
DPLL algorithm, 17

I
Implicant, 18
Implicate, 18

22

	List of Figures
	List of Tables
	List of Code Blocks
	Introduction
	Bit Counter
	Truth Table
	Processing S0
	Processing S1
	Alternative Resolution of S0

	Abbreviations
	Glossary
	Bibliography
	Index

